Dimensions .07 Conference

Meeting the Challenges of Thermal Packaging

Designing a Cold Chain Package Doesn't Have to Take an Ice Age

> Mark Escobedo Chief Technologist Westpak, Inc

Outline

Look at the Environment
Three Prong Approach
Package Design

Types of Thermal Packaging

Active

- Requires refrigeration system
- Heat Pump
- Passive
 - Frozen (Dry Ice)
 - Refrigerated (2-8°C)

The Challenge

Narrow Temperature Range
Thermal Characteristics of Product
Insulated Material Properties
Dynamic Distribution Environment

Measure the environment

What temperature range do I design for?
Measure the Environment
What can we predict

How Long?

- Overnight Air worst case 72 hours?
- Distribution Center

Average Temperatures in the United States

Record Temperatures in the United States

Measure the Environment

If we measure the environment

- We can develop our own protocol
- Statistical significance
- Time intensive
- Expensive
- What about other studies
 - Literature Search
 - Data published by Standards Organizations

Atmospheric Conditions: Example Temperature Study

Unmodified ISTA 5B Profile

Unmodified ISTA 5B Profile

Standards Organization

ISTA 24 and 48 hour Summer Profile

Domestic Small Package Express Freight Transport (Air)

Theoretical Summer Profile

Max A 96 Hour Summer Profile

Formula for Package Design

Heat Transfer

Thermal Mass

Phase Change

Water and Phase Change

Solid (Ice)

Heat of Fusion 334 kJ/kg

Liquid (Water)

Heat of Vaporization 2257 kJ/kg

Why is Phase Change Important?

Phase Change Materials

Advantages

- Energy Absorption
- Change between solid and liquid
- Water based materials OC
- Disadvantages
 - Can be expensive and sometimes toxic
 - Many packages can meet requirements without these materials
 - Difficult direct contact with product

Gel Packs

Phase Change Refrigerant -1°C (+30°F)

Gel Pack 0°C (+32°F)

Insulation

Performance dependent on:
 Material properties

 Conductivity
 Surface properties (for radiation)

 Thickness
 Quality of Construction

Insulated Container Types

Expanded Polystyrene
Rigid Polyurethane Panels
Lined Rigid Polyurethane

Package Design Made Simple

A lot of insulation

Lots of Thermal Mass

Phase Change Material

Package Design Made Simple

Consequences of poor design

- A very small payload
- A very large package
- That is difficult to move

Package Design Considerations

Damage Criteria Acceptable Temperature Range Materials Refrigerant Type Thermal Mass of product Distribution Cycle Testing

Package Design Considerations

Coolant Placement
 Adjacent to Product

- Restrain movement
- Select largest size possible
- Create a conditioned "core"

Evaluating the Package

Thermal Performance Evaluation

- Sensitivity of sensors
- Locations of sensors
- Duration of collection
- What about Package Performance
 - What does my package look like after distribution cycle?

Rigid Polyurethane containerFlexible Polyurethane Foam Cushion top

- Both are open cell materials
- Container is sealed with a solid poly material
- Top cushion is not

Gel Packs loose in top of containerPU Foam Cushion

- No thermal mass on the bottom of the container
- Leads to a non-uniform thermal condition

Thermal Mapping Box 2 Box 2 Middle Box 2 Top - Box 2 Bottom -- \rightarrow Lab (Ambient) **─**~ 2°C **→** 8°C 35 30 25 Temperature °C 20 15 10 5 0 -5 100.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 110.00 120.00 Time (Hours)

Package Performance

Vibration

Random
Compression
Shock

Drop, impact

Atmospheric
Standard performance testing protocols

Good Package Design

More insulation the better, right?

- Insulation costs money, results in higher BOM costs
- Large Packages are a problem
 Hard to carry & Difficult to store
 - Increased surface area hurts performance
 - Costly to ship
- Customer must deal with disposal

Good Package Design

Large Thermal Mass

- Lots of gel packs plus payload
- Shipping Mostly Water (60lbs/ft³ !)
- Supplemental items like gel packs, bricks, etc can be expensive
- These items must be stored at temperature prior to pack out

Small Insulated Shipper Setpoint +30°C and +40°C

Closing Thoughts

Know your environment Determine the Thermal Mass requirements Design a tight internal package Evaluate the Pack using a data logger

Make adjustments

Closing Thoughts

 Take time to understand the fundamentals of heat transfer
 Explore Other Configuration Options
 Get more control over
 Operations costs

- Quality
- Suppliers

Dimensions .07 Conference

Thank you

Questions?