Educational Research in Packaging Science Program, RIT

Feasibility of printing RFID antennas on corrugated paperboard

by Juthamart Sayampol

> San Antonio, TX April, 2006

Agenda

- Background
- Research: identify problem
- Study Topic and Objective
- Experimentation I: methodology and result
- Experimentation II: methodology and result
- Conclusion
- Further Studies: the related topics
- Dedication

Background

Why Printed-RFID on Corrugated?

- RFID Trend in Packaging Business
- Corrugated Packaging Business
- Personal Inspiration

RFID Trend in Packaging Business

Wal-Mart's RFID Mandate

"The world's largest retailer asked all suppliers to put RFID tags on pallet and cases by 2006."

Estimated 4 billion tags per year *

RFIDJournal, 2004

Plus:

DoD (USA)
Tesco (UK)
Metro AG (German)

RFID Mandate

RFID Trend in Packaging Business

Why can't we say "No" to Wal-Mart?

- No.1 largest private employer in USA with <u>1.3 million</u> employees
- 138 million shoppers per week; \$8,126 in sales per second
- Wal-Mart sells in <u>3 months</u>Home Depot sells in <u>1 year</u>

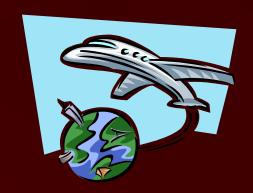
Top 10 Retailers Worldwide

Rank Retailer Sales in US Dollars (\$Mil)

1 Wal-Mart Stores, Inc.	\$163,532.0		
2 Carrefour Group	\$52,196.1		
3 The Kroger Co.	\$45,352.0		
4 Metro AG	\$44,163.4		
5 The Home Depot, Inc.	\$38,434.0		
6 Albertson's, Inc.	\$37,478.0		
7 ITM Enterprises SA	\$36,762.5		
8 Sears, Roebuck and Co.	\$36,728.0		
9 K mart Corporation	\$35,925.0		
10 Target Corporation	\$33,702.0		
Source: PricewaterhouseCoopers, 2000			

RFID Trend in Packaging Business

Future Packaging (With RFID tag)


They are all smart!

Corrugated Packaging Business

"Growing Demand in Asia"

Trend: Off-shoring to Asia (Outsourcing)

Corrugated: Packaging for Distribution

Corrugated Packaging Business

Don't you think, we should be ready?

One day Manufacturers will ask, "Put it (RFID) in, save me the cost and save me the trouble"

(Mark Robertí, 2004)

Personal Inspiration!

6⁺ years experience in "corrugated packaging business" brought to an interest in

New Technology to Implement in Corrugated Industry

Research

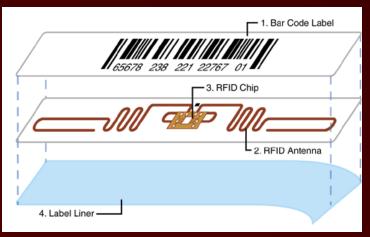
Research on RFID in Packaging Industry

- Implementation situation: high cost, lack of know-how, very little implementation
- Market's requirement: low coat RFID
- Packaging industry's awareness: ability to provider RFID with competitive price

Research

Research on RFID in Packaging Industry

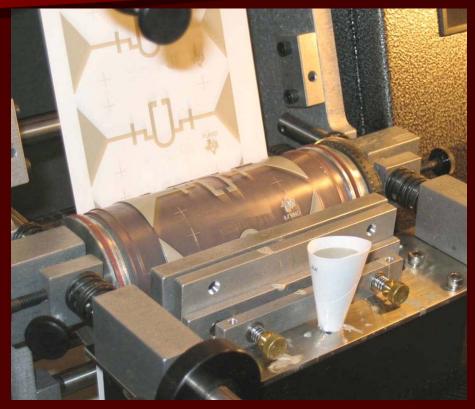
- Existing application
 - Applied Labels (Slap and Ship) : Slow & costly
 - Placed Inlays : expensive & insecure
 - Integrated RFID : high investment & lack of know-how
- Innovation of conductive ink for "Printed RFID"
- No published information found on "Printed RFID" and "Corrugated"

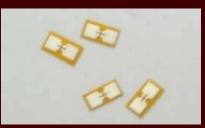


Type of RFID for Packaging

RFID tags for Packaging

- Conventional RFID : Copper antenna on label
- Printed RFID: Printed antenna with conductive ink
 - On Label
 - On Package or Product (Integrated RFID)


RFID Journal, 2005



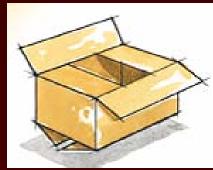
Type of RFID for Packaging

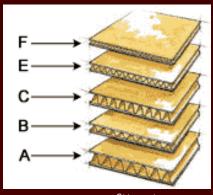
Printed RFID on Packaging

Antenna Printing Process on Labels

RFID Microchip

Strap-attach-based Microchip www.rfidproductnews.com, 2005

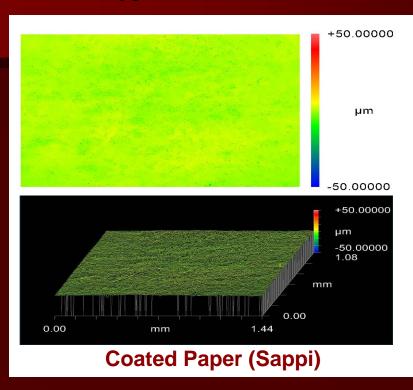

RFID for Corrugated?

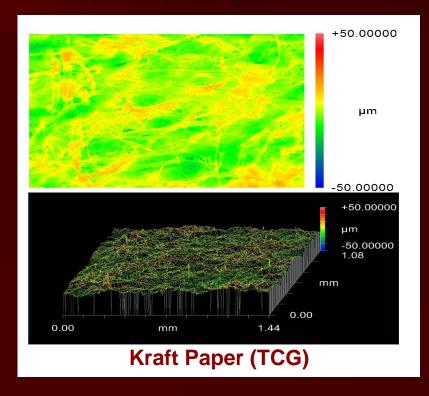

Possibility to apply Integrated

RFID on Corrugated?

Limitations of corrugated on print quality:

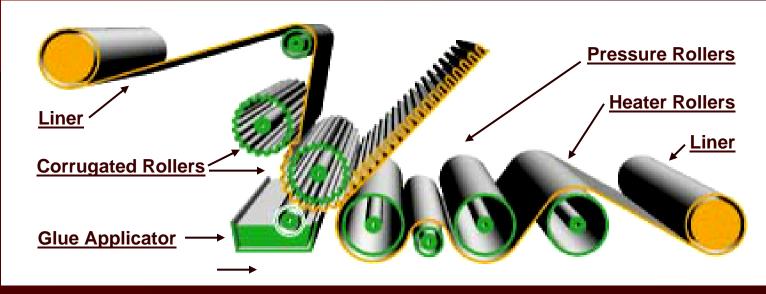
- Surface Roughness
- Flute Stripes

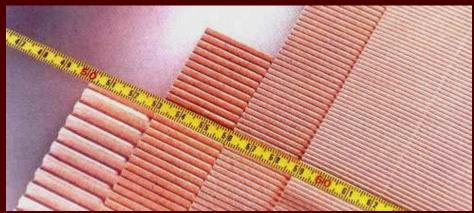

www.fibrebox.org



Surface Roughness Comparison

Tester: Zygo NewView 200 Profilometer and Parker Print-Surf Roughness Tester





S	urface Roughness	Coated (µm)	Kraft (µm)	Diff.
	Ra	0.72 - 0.78	4.20 – 5.20	85%
	Parker Print-Serf	0.95 - 1.00	7.60 - 7.86	87%

Flute Stripe Effect

Study Topic and Objective

Τορίο: Feasibility of Printing RFID

Antennas on Corrugated Paperboard

Objective:

- determine the technical feasibility of printing RFID antennas directly on kraft-corrugated
- identify the possibility of using the functional RFID antennas in severe environment

Study Topic and Objective

Τορίο: Feasibility of Printing RFID

Antennas on Corrugated Paperboard

Experimentation:

- <u>Section /</u> Conductivity of the Printed Antennas
- <u>Section //</u> Performance of Functional Antennas under Severe Environments

Experimentation

Flexography Proving-scale Printer

Printing Speed: 20 ml/m²

Anilox Volume: 0.3 m/s

Fluke 87: rms Multi-meter

Environmental Controlled Chamber

Science TempTM: Freezer

Experimentation

Materials:

Substrates

- Coated Paper: 10 mils (Sappi)
- Kraft Paper: KI 185, 38 lb/1000 sq.ft. (TCG)
- Corrugated E-flute: KI185/CA125/KI185 (38/26/38) (TCG)
- Corrugated B-flute: KI185/CA125/KI185 (38/26/38) (TCG)
- Corrugated C-flute: KI185/CA125/KI185 (38/26/38) (TCG)
- Conductive Ink: Precisia CFW-104, Water-based silver ink

Experimentation

Materials:

■ Antenna Style: Alien's 12

Printing Plate/Pattern:

Dupont's Cyrel, Flexographic polymer

Experimentation : Conductivity of the printed antenna

<u>Test Parameter</u>: Electrical Resistance (Ω or Ohm)

Find the proper inking force

Find an optimal printing condition for each substrate (printing pressure & speed)

Print antennas on each substrate using the best printing conditions

Measure and Compare

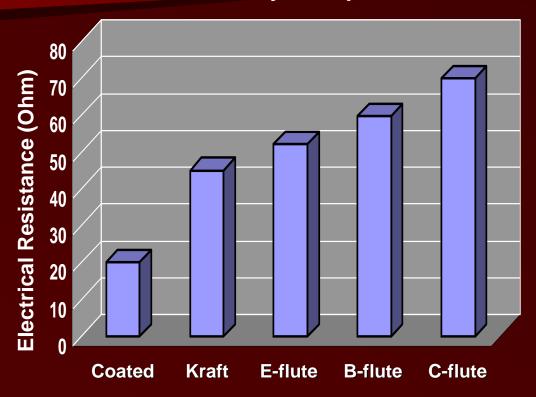
Measure Commercial Labels for Printability Evaluation

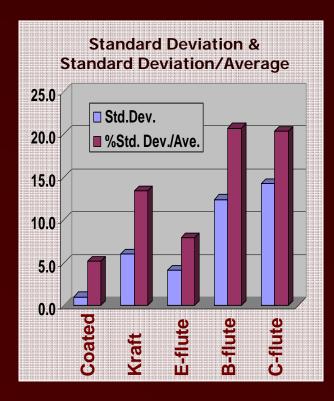
Test Specimens:

Experimentation 1

Test Result: Printing Condition Tests for Each Substrate

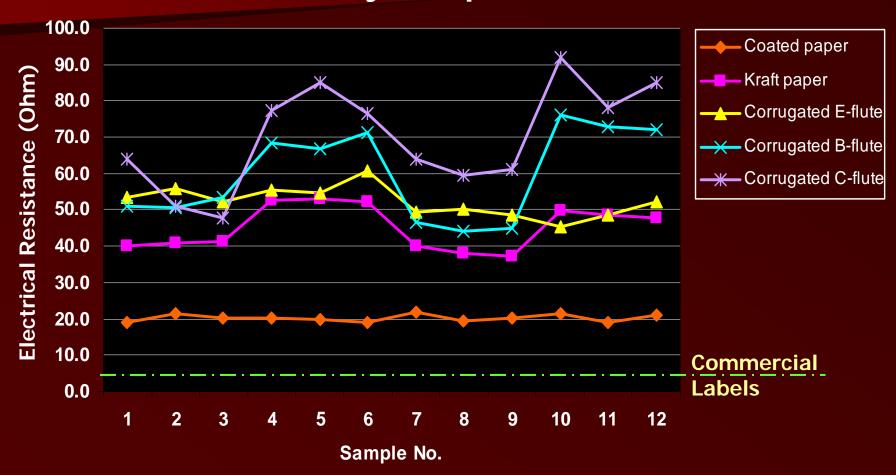
DÍSCUSSÍON: When printing condition changed;


- Conductivity on Coated Paper slightly changed
 - Higher pressure: higher conductivity
 - Higher speed: lower conductivity
- Conductivity on Kraft Paper & E-flute had bigger change, but in same direction
- Conductivity on <u>B-flute & C-flute</u> was fluctuated with no accordance to pressure & speed



Test Result: Conductivity Measurement & Comparison

Conductivirty Comparison



Test Result: Conductivity Measurement & Comparison

Conductivity Comparison

Experimentation 1: Conductivity of the printed antenna

Díscussion:

- The variability in conductivity of kraft paper and corrugated substrates might be caused by the physical properties of materials: fluteprofile, gap between liners, and flute-stripes.
- Among corrugated substrates, flute-profiles directly affected the quality of antennas.

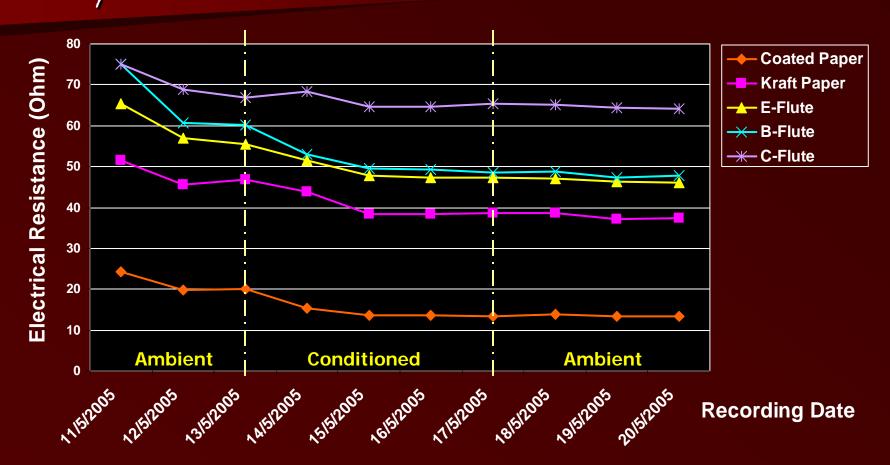
Experimentation I: Conductivity of the printed antenna

conclusion:

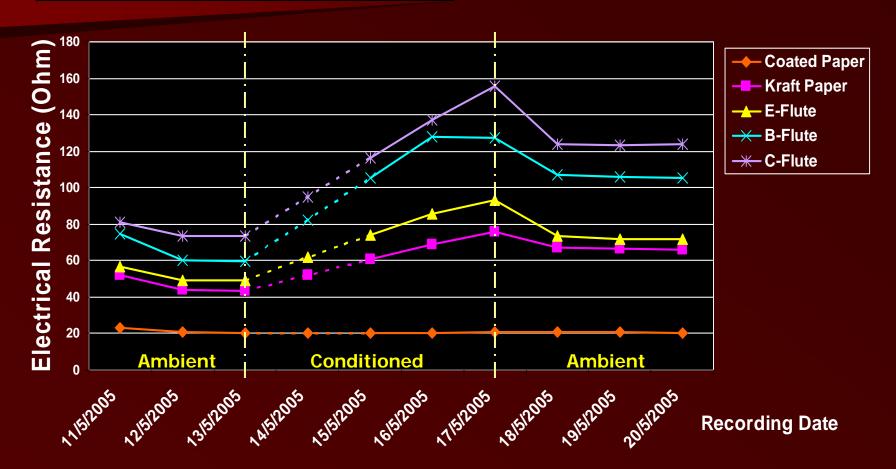
- Although kraft and corrugated substrates gave lower conductivity compared to coated paper, their antennas were conductive suggesting that the substrates could be used for printed RFID
- Modification on physical properties of these substrates may help to improve printability, and allow them to provide better conductive antennas

Experimentation II: Performance of the antennas in severe environments

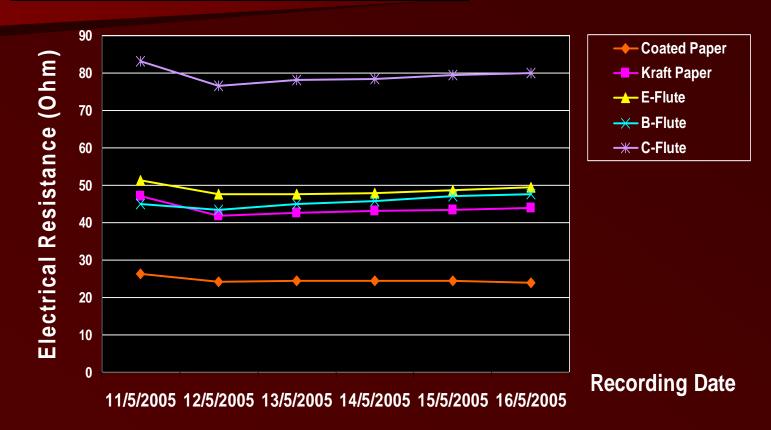
Test Parameter: Electrical Resistance (Ω or Ohm)


Select functional antennas from experiment I 2 days Conditioned at Leave at Ambient Conditioned at 4 days 70°F (21°C), 104°F (40°C), 90% RH -67°F (-55°C) (Frozen Environment) 50% RH (Tropical Environment) Measure resistance Measure resistance Leave at Ambient 3 days Measure resistance

Test Result: Conditioning & Measurement


Tropical Environment (104 F, 90%RH)

Test Result: Conditioning & Measurement

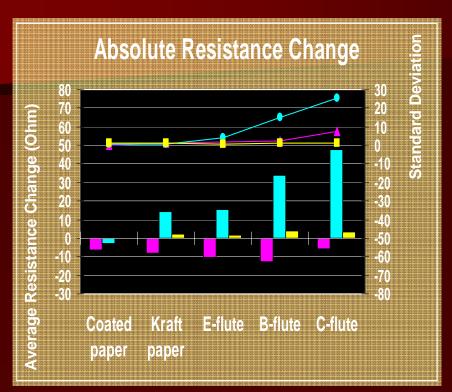

Frozen Environment (-56 F)

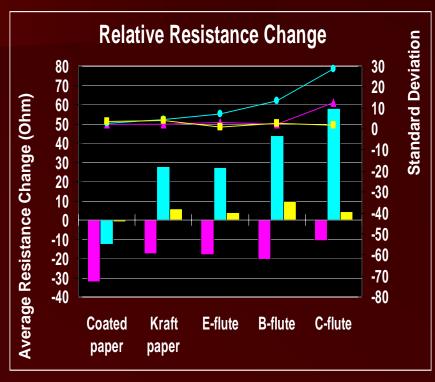
Test Result: Conditioning & Measurement

Ambient Environment (-56 F)

Experimentation II: Performance of the antennas in severe environments

Díscussion:


For all Substrates;


- <u>Tropical Environment</u> improved conductivity of the antennas.
- Frozen Environment showed significant reduction in conductivity of the antennas.
- Ambient Environment had slight effect on conductivity of the antennas (no significant change).

Test Result : Data Analysis

Tropical: Average

Frozen: Average

Ambeint: Average

→ Tropical: Std. Dev.

-- Frozen: Std. Dev.

-- Ambient: Std. Dev.

Minus values represent the decreases of resistance change. Plus values represent the increases of resistance change.

Experimentation II: Performance of the antennas in severe environments

conclusion:

- The antennas on Kraft paper and corrugated substrates had much greater conductivity-change (in value) in all given environments, compared to coated paper (label substrate).
- However, the conductivity of those substrates showed smaller proportional changes, compared to coated paper.

Conclusion: Wrap-up

- Kraft paper and corrugated paperboard could be used for printing RFID antennas.
- Kraft paper gave more-conductive antennas than corrugated, suggesting that pre-printing may be an opportunity for printing antennas.
- Environmental changes have a significant impact on the antennas printed on kraft paper and corrugated.

Further Studies: The related topics

- Improvement of kraft paper and corrugate paperboard for printing RFID antennas applications using primers and surface-preparations
- Printing RFID antennas with microchips attached in line for packaging conversion
- The potential of using pre-printing process for printing RFID antennas on corrugated packaging, compared to post-printing process

Dedication: the Deepest of Appreciation

- Dr. Bruce Kahn, *my encouraging head-advisor*
- Mr. Daniel Clark, my patient mentor
- Prof. Deanna Jacobs, *my thoughtful advisor*
- Prof. Karen Proctor, *my helpful advisor*
- Dr. Daniel Goodwin, *my assisting advisor*
- Mr. Dan Lawrence, *a meaningful supporter*
- Mr. Michael Petersen, *a wonderful supporter*
- Mr. Chalermlarp Rungkamol, *my very supportive friend*

THANK YOU FOR YOUR ATTENTION!

