

New Cushion Curve Method

Matt Daum, Ph.D.

March 2006

© 2005 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Change

Change

Change

Change for the Beloved Cushion Curve?

Current Method: Cushion Curve

Limitations of Current Method

1. Resource-intensive:

ASTM D1596 requires lots of samples and time

Limitations of Cushion Curves

2. Limited Data

What if I want to know G level in these areas?

Limitations of Current Method

Lots of samples: ~10,500 for one curve set

 Lots of time: ~175 hours test time, plus sample making and data analysis

 Very specific: if you didn't test it, you don't have the curve...

Something New

Something New

What if you could...

 Generate a cushion curve for ANY combination of variables?

 Have all the data for these curves represented in ONE easy equation?

 Have all this quickly, at a fraction of the effort of the current method?

- Called "Stress-Energy" method
 - Technically, Dynamic stress vs. dynamic energy density
 - Pioneered by Dr. Burgess @ MSU 1990
- Stress-Energy is about material properties
 - Relationship b/w variables SL, h, t, and G
 - From ONE equation, can construct ANY cushion curve infinite data from one test!
 - Can be generated with as few as 10 drops

Simply, the relationship between

 "how much energy the material absorbs" and
 "how the material reacts to shock"

• Dynamic Energy:
$$\frac{Static\ Loading \times drop\ height}{cushion\ thickness} \text{ or, } \frac{sh}{t}$$

• Dynamic Stress: $Peak\ G \times static\ loading\ or, Gs$

Relationship between existing variables

$$s = 1.0$$

 $h = 36$ "
 $t = 2.0$ "

Energy =
$$sh/t = 18$$

Stress = $G*s = 50$

Does it work?
Test: predict G's

Energy = 18:

h	S	t	G*s	G
36	0.5	1.0	96	95
36	1.5	3.0	29	30
36	2.0	4.0	22	22

One equation describing cushion behavior:

$$y = ae^{bx}$$

- ANY cushion curve can be calculated
 - Closed cell foam, and corrugated
 - -See literature from Burgess, Wenger, etc.

$$y = ae^{bx}$$

x and y from testing

$$y = stress = Gs$$

$$x = energy = \frac{sh}{t}$$

a and b calculated from curve fitting for each specific material and density

Limited Data

Don't think of cushion curves as lines on a grid

Unlimited Data

Think of cushion curves as lines from an equation

- 1. Plot Stress vs Energy
- 2. LSM, or Power Trendline in Excel

This equation can now be used to draw any cushion curve

Compare Methods

	Current: ASTM D1596	New: Stress vs. Energy
Test Apparatus	Cushion drop test	Same
Collect data	height, area, thickness, G, wt	Same data, less drops
Plot results	Plot G vs static stress	Plot Gs vs sh/t
Calculate	n/a	Curve fit

Compare Methods

h	W	а	t	G	Gs	sh/t
18	25.6	64	3.0	30	12.0	2.4
24	32.0	64	1.5	51	25.5	8.0
30	32.0	64	1.5	55	27.5	10.0
36	57.6	64	2.0	60	54	16.2
42	32.0	64	3.0	45	22.5	7.0
					八	

Data
Collection is same

Calculate and plot new relationships

From Equation to Cushion Curve

Case Study

Case Study: Background

LaserJet

User of Arcel 730

Where are the cushion curves?

Michigan State

Stress Energy Method

<u>Develop Test Procedure</u>

Arcel 730

Generate Cushion

<u>Curves?</u>

Clemson

Performed Test

Collect Data

Case Study: Test Objectives

•Find Stress vs. Energy equation for Arcel 730

- -1.2 pcf
- -1.7 pcf
- -2.2 pcf
- -3.0 pcf

Case Study: Test Procedure

TEST PROCEDURE

<u>Step 1</u> Set maximum and minimum limits on the energy absorbed. Since energy = sh/t, the minimum energy corresponds to the smallest s, the smallest h, and the largest t that you want data for. If the intent is to eventually produce a standard set of cushion curves, then for closed-cell foams, these values are usually s = 0.5 psi, h = 12 inches, and t = 6 inches. These give sh/t = 1 in-lb/in³. For open-cell foams, this limit will be lower because the material is not as stiff.

The maximum energy corresponds to the largest s, the largest h, and the smallest t that you want data for. If the intent is to eventually produce a standard set of cushion curves, then for closed-cell foams, these values are usually s = 3 psi, h = 48 inches and t = 3 inches. These give sh/t = 48 in-lb/in³. For open-cell foams, this limit will be lower.

It is not necessary to set an exact range. This step is merely a guideline to establish limits within which to conduct drop tests. Machine limitations may require modifications to this range.

Step 2 Divide the energy range in Step 1 into about 10 approximately evenly spaced points. If the range 1 to 48 is used, then test for energies in steps of about 5 psi. You could for example choose 9 different energies equal to 5, 10, 15 and 45 in-lb/in³.

Step 3 For each of the energies chosen in Step 2, select five different combinations of s, h and t values that give this energy. These 5 combinations are in effect "replicates" for each of the energies listed in the range in Step 2. For example, five different combinations of s, h and t that give sh/t = 30 are:

Case Study: Results

Sample	Drop#	Area squnches	Weight IDS	h inches	t inches	G
30C	136	12.8	25.6	30	2	
35A	151	12.8	32	14	1	
50C	236	12.8	64	20	2	
50A	226	12.8	32	20	1	
5B	6	38.4	19.2	20	2	
5A	1	38.4	12.8	15	1	
5C	11	38.4	12.8	30	2	
5D	16	38.4	32	18	3	
5E	21	38.4	32	24	4	
10C	36	19.2	12.8	30	2	
10E	46	19.2	32	24	4	
10D	41	19.2	12.8	45	3	
10B	31	19.2	19.2	20	2	
10A	26	19.2	12.8	15	1	
15E	71	19.2	32	36	4	
15B	56	12.8	19.2	20	2	
15C	61	12.8	25.6	15	2	
15A	51	12.8	12.8	15	1	
15D	66	12.8	32	18	3	

Case Study: Results

Case Study: Results

Stress vs. Energy equation for Arcel
730

- -1.2 pcf
- -1.7 pcf
- -2.2 pcf
- -3.0 pcf

- Stress/Energy Equation generated
- Cushion properties fully characterized
- ANY cushion curve can now be drawn

Conclusion

Conclusion

Recommendation #1

-Convert existing cushion curves into Stress/Energy equations

-Generate new data?

Calculated Values from Existing Cushion Curves

Name	Material	Density (pcf)	Impact	Α	В
ARCEL 512	Arcel	1.2	1	18.79	0.0543
ARCEL 512	Arcel	1.2	2-5	18.643	0.0786
DYLITE D195B	EPS	1.25	1	20.655	0.0474
DYLITE D195B	EPS	1.25	2-5	20.486	0.0834
Eperan EPP	EPP	1.3	1	12.463	0.0782
Eperan EPP	EPP	1.3	2-5	13.573	0.1007
Eperan EPP	EPP	1.9	1	21.312	0.0448
Eperan EPP	EPP	1.9	2-5	25.443	0.0478
Arpro EPP 3413	EPP	1.3	1	13.424	0.0735
Arpro EPP 3413	EPP	1.3	2-5	14.065	0.0864
Arpro EPP 3419	EPP	1.9	1	22.172	0.0445
Arpro EPP 3419	EPP	1.9	2-5	20.779	0.0595
Ethafoam Nova	EPE	1.7	1	10.666	0.1039
Ethafoam Nova	EPE	1.7	2-5	9.9059	0.1386
Ethafoam HS 45	EPE	3.9	1	18.585	0.0586
Ethafoam HS 45	EPE	3.9	2-5	17.786	0.0790
Ethafoam 220	EPE	2.2	1	14.538	0.0658
Ethafoam 220	EPE	2.2	2-5	14.684	0.0881
Ethafoam Select	EPE	1.9	1	9.5351	0.1003
Ethafoam Select	EPE	1.9	2-5	9.8891	0.1036

Conclusion

•Recommendation #2

-Re-visit ASTM 1596?

Thank You

Questions?

